Dark matter
In astronomy and cosmology, dark matter is a conceptualization for observed physical mass at cosmological scales in space where matter itself does not exist. “Dark matter” is inferred to exist based on observed gravitational effects on “visible matter” and background radiation, but is undetectable as matter through emitted or scattered electromagnetic radiation. Its existence was hypothesized to account for discrepancies between measurements of the mass of galaxies, clusters of galaxies and the entire universe made through dynamical and general relativistic means, and measurements based on the mass of the visible “luminous” matter these objects contain: stars and the gas and dust of the interstellar and intergalactic media. According to observations of structures larger than galaxies, as well as Big Bang cosmology interpreted under the “Friedmann equations” and the “FLRW metric”, dark matter accounts for 23% of the mass-energy density of the observable universe, while the ordinary matter accounts for only 4.6% (the remainder is attributed to dark energy. From these figures, dark matter constitutes 80% of the matter in the universe, while ordinary matter makes up only 20%.
Dark matter was postulated by Fritz Zwicky in 1934, to account for evidence of “missing mass” in the orbital velocities of galaxies in clusters. Subsequently, other observations have indicated the presence of dark matter in the universe, including the rotational speeds of galaxies, gravitational lensing of background objects by galaxy clusters such as the Bullet Cluster, and the temperature distribution of hot gas in galaxies and clusters of galaxies.
The Term Paper on Dark Matter, Dark Energy
... Dark Matter & Dark Energy, that dark matter surrounds the galaxies in a halo keeping the rotation speeds of the galaxies constant thus giving the galaxies mass ... dark matter, one needs to explore what comprises dark matter and dark energy, the role they play within the universe and the relationship between dark matter and dark energy. Dark Matter ... studying the Coma Cluster of Galaxies in which he ...
Dark matter plays a central role in state-of-the-art modeling of structure formation and galaxy evolution, and has measurable effects on the anisotropies observed in the cosmic microwave background. All these lines of evidence suggest that galaxies, clusters of galaxies, and the universe as a whole contain far more matter than that which interacts with electromagnetic radiation: the remainder is frequently called the “dark matter component,” even though there is a small amount of baryonic dark matter. The largest part of dark matter, which does not interact with electromagnetic radiation, is not only “dark” but also, by definition, utterly transparent.
The vast majority of the dark matter in the universe is believed to be nonbaryonic, which means that it contains no atoms and does not interact with ordinary matter via electromagnetic forces. The nonbaryonic dark matter includes neutrinos, and possibly hypothetical entities such as axions, or supersymmetric particles. Unlike baryonic dark matter, nonbaryonic dark matter does not contribute to the formation of the elements in the early universe (“big bang nucleosynthesis”) and so its presence is revealed only via its gravitational attraction. In addition, if the particles of which it is composed are supersymmetric, they can undergo annihilation interactions with themselves resulting in observable by-products such as photons and neutrinos (“indirect detection”).