Without knowing something about differential equations and methods of solving them, it is difficult to appreciate the history of this important branch of mathematics. Further, the development of differential equations is intimately interwoven with the general development of mathematics and cannot be separated from it. Nevertheless, to provide some historical perspective, we indicate here some of the major trends in the history of the subject, and identify the most prominent early contributors.
Other historical infor- mation is contained in footnotes scattered throughout the book and in the references listed at the end of the chapter. The subject of differential equations originated in the study of calculus by Isaac Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716) in the seventeenth century. Newton grew up in the English countryside, was educated at Trinity College, Cambridge, and became Lucasian Professor of Mathematics there in 1669. His epochal discoveries of calculus and of the fundamental laws of mechanics date from 1665.
They were circulated privately among his friends, but Newton was extremely sensitive to criticism, and did not begin to publish his results until 1687 with the appearance of his most famous book, Philosophiae Naturalis Principia Mathematica. While Newton did relatively little work in differential equations as such, his development of the calculus and elucidation of the basic principles of mechanics provided a basis for their applications in the eighteenth century, most notably by Euler.
The Essay on Differential Equation
Assume that the resulting system is linear and time-invariant. x[n] O + r0n] D y[n] +1 3 -2 Figure P6. 5 (a) Find the direct form I realization of the difference equation. (b) Find the difference equation described by the direct form I realization. (c) Consider the intermediate signal r[n] in Figure P6. 5. (i) Find the relation between r[n] and y[n]. (ii) Find the relation between r[n] and x[n]. ( ...
Newton classified first order differential equations according to the forms dy/dx = f (x), dy/dx = f (y), and dy/dx = f (x,y).
For the latter equation he developed a method of solution using infinite series when f (x,y) is a polynomial in x and y. Newton’s active research in mathematics ended in the early 1690s except for the solution of occasional challenge problems and the revision and publication of results obtained much earlier. He was appointed Warden of the British Mint in 1696 and resigned his professorship a few years later.
He was knighted in 1705 and, upon his death, was buried in Westminster Abbey. Leibniz was born in Leipzig and completed his doctorate in philosophy at the age of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work in several different fields. He was mainly self-taught in mathematics, since his interest in this subject developed when he was in his twenties. Leibniz arrived at the fundamental results of calculus independently, although a little later than Newton, but was the first to publish them, in 1684.
Leibniz was very conscious of the power of good mathematical notation, and our notation for the derivative, dy/dx, and the integral sign are due to him. He discovered the method of separation of variables (Section 2. 2) in 1691, the reduction of homogeneous equations to separable ones (Section 2. 2, Problem 30) in 1691, and the procedure for solving first order linear equations (Section 2. 1) in 1694. He spent his life as ambassador and adviser to several German royal families, which permitted him to travel widely and to carry on an extensive correspondence with other mathematicians, especially the Bernoulli brothers.
In the course of this correspondence many problems in differential equations were solved during the latter part of the seventeenth century. The brothers Jakob (1654–1705) and Johann (1667–1748) Bernoulli of Basel did much to develop methods of solving differential equations and to extend the range of their applications. Jakob became professor of mathematics at Basel in 1687, and Johann was appointed to the same position upon his brother’s death in 1705. Both men were quarrelsome, jealous, and frequently embroiled in disputes, especially with each other.
Nevertheless, both also made significant contributions to several areas of mathematics. With the aid of calculus they solved a number of problems in mechanics by formulating them as differential equations. For example, Jakob Bernoulli solved the differential equation y? = [a3/(b2 y ? a3)]1/2 in 1690 and in the same paper first used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able to solve the equation dy/dx = y/ax. One problem to which both brothers contributed, and which led to much friction between them, was the brachistochrone problem
The Research paper on Critical Thinking and Problem solving
Numerous decisions are taken every day. People choose when to get up on a certain morning, what clothing to wear, and whether to read a particular book. Most of the decisions made throughout the day are relatively trivial or inconsequential. It probably does not matter too much if it is decided to sleep an extra 15 minutes on a certain morning or if a blue shirt is selected rather than a green ...