military technology Wrought-iron breechloaders Partly because of the difficulties of making a long, continuous barrel, and partly because of the relative ease of loading a powder charge into a short breechblock, gunsmiths soon learned to make cannon in which the barrel and powder chamber were separate. Since the charge and projectile were loaded into the rear of the barrel, these were called breechloaders. The breechblock was mated to the barrel by means of a recessed lip at the chamber mouth. Before firing, it was dropped into the stock and forced forward against the barrel by hammering a wedge into place behind it; after the weapon was fired, the wedge was knocked out and the block was removed for reloading.
This scheme had significant advantages, particularly in the smaller classes of naval swivel guns and fortress wall pieces, where the use of multiple breechblocks permitted a high rate of fire. Small breechloaders continued to be used in these ways well into the 17 th century. The essential deficiency of early breechloaders was the imperfect gas seal between breechblock and barrel, a problem that was not solved until the advent of the brass cartridge late in the 19 th century. Hand-forging techniques could not produce a truly gastight seal, and combustion gases escaping through the inevitable crevices eroded the metal, causing safety problems. Wrought-iron cannon must have required constant maintenance and care, particularly in a saltwater environment. Wrought-iron breechloaders were the first cannon to be produced in significant numbers.
The Essay on Wrought Iron
Microstructure of Wrought Iron Wrought Iron • Wrought iron was once the most important metallic engineering material but it has now been almost totally replaced by the different grades of steel. • A little wrought iron is still made and will probably continue to be made since it possesses certain extremely valuable properties. • Wrought iron is a soft but ductile metal made from pig iron by a low ...
Their tactical viability was closely linked to the economics of cannonballs of cut stone, which, modern preconceptions to the contrary, were superior to cast-iron projectiles in many respects. Muzzle velocities of black-powder weapons were low, and smoothbore cannon were inherently inaccurate, so that denser projectiles of iron had no advantage in effective range. Cannon designed to fire a stone projectile were considerably lighter than those designed to fire an iron ball of the same weight; as a result, stone-throwing cannon were for many years cheaper. Also, because stone cannonballs were larger than iron ones of the same weight, they left larger holes after penetrating the target. The principal deficiency of stone-throwing cannon was the enormous amount of skilled labour required to cut a sphere of stone accurately to a predetermined diameter. The acceleration of the wage-price spiral in the 15 th and 16 th centuries made stone-throwing cannon obsolete in Europe.
Cast bronze muzzle-loaders The advantages of cast bronze for constructing large and irregularly shaped objects of a single piece were well understood from sculpture and bell founding, but a number of problems had to be overcome before the material’s plasticity could be applied to ordnance. Most important, alloys had to be developed that were strong enough to withstand the shock and internal pressures of firing without being too brittle. This was not simply a matter of finding the optimal proportions of copper and tin; bronze alloys used in cannon founding were prone to internal cavities and “sponginess,” and foundry practices had to be developed to overcome the inherent deficiencies of the metal. The essential technical problems were solved by the first decades of the 15 th century, and, by the 1420 s and ’30 s, European cannon founders were casting bronze pieces that rivaled the largest of the wrought-iron bombards in size.
Developments in foundry practice were accompanied by improvements in weapon design. Most notable was the practice of casting cylindrical mounting lugs, called trunnions, integral with the barrel. Set just forward of the centre of gravity, trunnions provided the principal point for attaching the barrel to the carriage and a pivot for adjusting the vertical angle of the gun. This permitted the barrel to be adjusted in elevation by sliding a wedge, or quoin, beneath the breech. At first, trunnions were supplemented by lifting lugs cast atop the barrel at the centre of gravity; by the 16 th century most European founders were casting these lugs in the shape of leaping dolphins, and a similarly shaped fixture was often cast on the breech of the gun. Toward the end of the 15 th century, French founders combined these features with efficient gun carriages for land use.
The Essay on Donatellos Bronze David
Thesis: Donatello was one of the most important fifteenth century masters whose bronze David is an enigma that is unlike Donatello?s other works in its different style, and unknown time of origin. Donatello was a gifted sculptor who lived in the fifteenth century and had a great impact on not only the Italian Renaissance, but also on the future of art in general. He was an innovator in his time ...
French carriage design involved suspending the barrel from its trunnions between a pair of heavy wooden side pieces; an axle and two large wheels were then mounted forward of the trunnions, and the rear of the side pieces descended to the ground to serve as a trail. The trail was left on the ground during firing and absorbed the recoil of the gun, partly through sliding friction and partly by digging into the ground. Most important, the gun could be transported without dismounting the barrel by lifting the trail onto the limber, a two-wheeled mount that served as a pivoting front axle and point of attachment for the team of horses. This improved carriage, though heavy in its proportions, would have been familiar to a gunner of Napoleonic times.
Sometime before the middle of the 16 th century, English smiths developed a highly compact four-wheeled truck carriage for mounting trunnion-equipped shipboard ordnance, resulting in cannon that would have been familiar to a naval gunner of Horatio Nelson’s day. By the early 1500 s, cannon founders throughout Europe had learned to manufacture good ordnance of cast bronze. Cannon were cast in molds of vitrified clay, suspended vertically in a pit. Normally, they were cast breech down; this placed the molten metal at the breech under pressure, resulting in a denser and stronger alloy around the chamber, the most critical point.
Subsequent changes in foundry practice were incremental and took effect gradually. As founders established mastery over bronze, cannon became shorter and lighter. In about 1750, advances in boring machines and cutting tools made it possible for advanced foundries to cast barrels as solid blanks and then bore them out. Until then cannon were cast hollow-that is, the bore was cast around a core suspended in the mold.
The Essay on Vimy Ridge Guns Mounted
Shock and Awe, 1917 Gary Graves, CBC News Online | April 9, 2003 We may marvel at the firepower of the hundreds of missiles and smart bombs used in U. S. attacks on Iraq, but an overwhelming battlefield fusillade creating shock and awe is not a new idea. In fact, Canadian soldiers fighting in the First World War were pioneers of the tactic. Click for map Source: National Archives It was at Vimy ...
Ensuring that the bore was precisely centred was a particularly critical part of the casting process, and small wrought-iron fixtures called chaplets were used to hold the core precisely in place. These were cast into the bronze and remained a part of the gun. Boring produced more accurate weapons and improved the quality of the bronze, since impurities in the molten metal, which gravitate toward the centre of the mold during solidification, were removed by the boring. But, while these changes were important operationally, they represented only marginal improvements to the same basic technology. A first-class bronze cannon of 1500 differed hardly at all in essential technology and ballistic performance from a cannon of 1850 designed to shoot a ball of the same weight. The modern gun would have been shorter and lighter, and it would have been mounted on a more efficient carriage, but it would have fired its ball no farther and no more accurately.
Previous | Next.