Aim: To examine characteristics of a converging lens and the images they create. Also to examine the focal length and how the focus point may be found and developing rules for locating an image via ray drawings and the intersection of rays. Chromatic aberration will also be explored and why it happens. Theory: Both lenses and mirrors have a principle axis, yet a lens has two focal points as opposed to a mirror that has only one. When considering converging lenses, the primary focal point (PF) can be found on the opposite side of the lens in regards to the light. The secondary focal point (SF) being on the same side as the light source. Focus points on thin double convex lenses are located at either side of the lens, measured from the middle of the lens itself (see below).
Chromatic aberration is a problem of converging lenses that will also be explored in this experiment. A description of each image produced will also be given (attitude, type, magnification and location).
Apparatus: The main tools (apparatus) used in the experiment consist of a ray box containing cards which allow one, two, three or four rays onto a sheet of paper at a time so that rays path from the box to the mirror will be able to be traced. Also two (2) different types of converging lenses, one being cylindrical while the other being spherical, the difference being that the spherical one is used for viewing, the cylindrical one for use with the ray box. These lenses are one of many different sorts of lenses in the “lens box”. The use of a ruler would also be helpful so that accurate measurements may be taken. Method: 1.
The Essay on Focal Point Lens Rays Lenses
Light that is emitted from a surface, or reflected from it, leaves the surface in the form of spherical wavefront's. Every point on the surface can be thought of as a source of these wavefront's. Rather than drawing the wavefront's, we customarily illustrate the propagation of light with rays. These are just lines with arrowheads that point in the direction in which the light is traveling. Lenses ...
A cylindrical lens was placed on paper and traced around, a principal axis was drawn making sure that it’s at rights angles to the lens. The ray box was switched on (exposing only one ray) and lined up parallel to the principle axis, a mark where the ray leaves the box was made as well as where it hits the lens (on both sides) and where the ray bisects the principle axis. After this, the ray box was removed and using a ruler, rays were accurately drawn. The focus point (f) was measured to be of length 7.3cm (7.25).
2. The lens was replaced back on a sheet of paper with ray box emitting three rays, the middle ray lined up on the principle axis, marks were made where the ray’s intersected at on the principle axis and this was measured to be the primary focus point.
3. Step two was carried out but on the other side of the lens and the secondary focus point was located and marked in. 4. The ray box was then placed on the original side of the lens and three separate rays where directed towards the lens to establish the following rules: a) A ray directed parallel to the principal axis will be directed through the primary focus. b) A ray through the secondary focus will be refracted out parallel to the principal axis. c) A ray directed through the middle of the lens will be directed out parallel to it’s original source.
5. A ray was then directed at the outer edge of the lens and the rays where directed just inside the focus point. Chromatic aberration took place in this case where rays of different colors were refracted out of the lens. 6. A technique was developed for defining the focus of spherical of “viewing” lenses. Below are the instructions. Place the ray box, lens and screen on a parallel axis (principal axis).
Switch the ray box on and move the lens backwards or forwards until the image goes to a single point on the screen and becomes inverse if the lens is moved any further. Measure the distance from the lens to the ray box. This is the focal length. As the lens passes the focal length the image becomes inverted (turned upside down).
The Essay on Refraction Of Light 61616 Angle Ray
Purpose: To investigate the behavior of light when it passes from air into an optically denser medium. Prediction / Hypothesis: When the light (incident ray) passes from air into an optically denser medium with an angle of incidence equal to zero, there would be no refraction. When the light passes at an angle from air into an optically denser medium, the light (incident ray) will immediately ...
7. When the lens is held at arm length to view objects around the room three characteristics can be seen from the image. The image is upright, inverse and the magnification decreases.
8. a) do>2F – inverted, real, reduced, beyond F and 2F. b) do=2F – inverted, real, same size, located at 2F. c) 2F.