Artificial intelligence is the combination of two words “artificial” & “intelligence”
ARTIFICIAL:
Made or produced by human beings rather than occurring naturally, especially as a copy of something natural
INTELLIGENCE
Intelligence (also called intellect) is an umbrella term used to describe a property of the mind that encompasses many related abilities, such as the capacities to reason, to plan, to solve problems, to think abstractly, to comprehend ideas, to use language, and to learn.
Intelligence is the computational part of the ability to achieve goals in the world. Varying kinds and degrees of intelligence occur in people, many animals and some machines.
ARTIFICIAL INTELLIGENCE
It is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable.
COMPARISONS BETWEEN HUMAN AND COMPUTER INTELLIGENCE
Arthur R. Jensen [Jen98], a leading researcher in human intelligence, suggests “as a heuristic hypothesis” that all normal humans have the same intellectual mechanisms and that differences in intelligence are related to “quantitative biochemical and physiological conditions”. I see them as speed, short term memory, and the ability to form accurate and retrievable long term memories.
Computer Science Term Paper
Computer Science Computer Science is an exciting field which requires dedication and hard work. A Computer Scientist sits at a desk all day and writes programs, technical writes, and various other tasks. At first a Computer Scientist starts under an executive, but in a few short years they are executives themselves. If a person wants to enter the field of Computer Science one must meet the ...
Whether or not Jensen is right about human intelligence, the situation in AI today is the reverse.
Computer programs have plenty of speed and memory but their abilities correspond to the intellectual mechanisms that program designers understand well enough to put in programs. Some abilities that children normally don’t develop till they are teenagers may be in, and some abilities possessed by two year olds are still out. The matter is further complicated by the fact that the cognitive sciences still have not succeeded in determining exactly what the human abilities are. Very likely the organization of the intellectual mechanisms for AI can usefully be different from that in people.
Whenever people do better than computers on some task or computers use a lot of computation to do as well as people, this demonstrates that the program designers lack understanding of the intellectual mechanisms required to do the task efficiently.
BRANCHES OF AI
Here’s a list, but some branches are surely missing, because no-one has identified them yet. Some of these may be regarded as concepts or topics rather than full branches.
LOGICAL AI
What a program knows about the world in general the facts of the specific situation in which it must act, and its goals are all represented by sentences of some mathematical logical language. The program decides what to do by inferring that certain actions are appropriate for achieving its goals. The first article proposing this was [McC59]. [McC89] is a more recent summary. [McC96b] lists some of the concepts involved in logical aI. [Sha97] is an important text.
SEARCH
AI programs often examine large numbers of possibilities, e.g. moves in a chess game or inferences by a theorem proving program. Discoveries are continually made about how to do this more efficiently in various domains.
PATTERN RECOGNITION
When a program makes observations of some kind, it is often programmed to compare what it sees with a pattern. For example, a vision program may try to match a pattern of eyes and a nose in a scene in order to find a face. More complex patterns, e.g. in a natural language text, in a chess position, or in the history of some event are also studied. These more complex patterns require quite different methods than do the simple patterns that have been studied the most.
The Essay on Tv Censorship Programs In Fact
Television Censorship Television is a very important part of the American society today. It is estimated that "the average American watches up to 6. 75 hours of television daily" (F lahey 35). But does something that is such an influence on the American society need to be censored Chambers' English Dictionary defines Censorship as "the authorization to examine books, films, television, or other ...
REPRESENTATION
Facts about the world have to be represented in some way. Usually languages of mathematical logic are used.
INFERENCE
From some facts, others can be inferred. Mathematical logical deduction is adequate for some purposes, but new methods of non-monotonic inference have been added to logic since the 1970s. The simplest kind of non-monotonic reasoning is default reasoning in which a conclusion is to be inferred by default, but the conclusion can be withdrawn if there is evidence to the contrary. For example, when we hear of a bird, we man infer that it can fly, but this conclusion can be reversed when we hear that it is a penguin. It is the possibility that a conclusion may have to be withdrawn that constitutes the non-monotonic character of the reasoning. Ordinary logical reasoning is monotonic in that the set of conclusions that can the drawn from a set of premises is a monotonic increasing function of the premises. Circumscription is another form of non-monotonic reasoning.
COMMON SENSE KNOWLEDGE AND REASONING
This is the area in which AI is farthest from human-level, in spite of the fact that it has been an active research area since the 1950s. While there has been considerable progress, e.g. in developing systems of non-monotonic reasoning and theories of action, yet more new ideas are needed. The Cyc system contains a large but spotty collection of common sense facts.
LEARNING FROM EXPERIENCE
Programs do that. The approaches to AI based on connectionism and neural nets specialize in that. There is also learning of laws expressed in logic. [Mit97] is a comprehensive undergraduate text on machine learning. Programs can only learn what facts or behaviors their formalisms can represent, and unfortunately learning systems are almost all based on very limited abilities to represent information.
PLANNING
Planning programs start with general facts about the world (especially facts about the effects of actions), facts about the particular situation and a statement of a goal. From these, they generate a strategy for achieving the goal. In the most common cases, the strategy is just a sequence of actions.
The Term Paper on Evolution Of The Pc Operating System part 1
Evolution of the PC Operating System Outline: 1. Abstract 2. Introduction 3. Some facts about the history of computer and operating systems: software evolution depending on hardware development: 3.1 Batch operating systems; 3.2 time-shared operating systems; 3.3 Personal computers of the middle 70s: CP/M (Control Program/Microcomputer). and DOS operating systems; 3.4 Developing personal computers ...
EPISTEMOLOGY
This is a study of the kinds of knowledge that are required for solving problems in the world.
ONTOLOGY
Ontology is the study of the kinds of things that exist. In AI, the programs and sentences deal with various kinds of objects, and we study what these kinds are and what their basic properties are. Emphasis on ontology begins in the 1990s.
HEURISTICS
A heuristic is a way of trying to discover something or an idea imbedded in a program. The term is used variously in AI. Heuristic functions are used in some approaches to search to measure how far a node in a search tree seems to be from a goal. Heuristic predicates that compare two nodes in a search tree to see if one is better than the other, i.e. constitutes an advance toward the goal, may be more useful. [My opinion].
GENETIC PROGRAMMING
Genetic programming is a technique for getting programs to solve a task by mating random Lisp programs and selecting fittest in millions of generations. It is being developed by John Koza’s group and here’s a tutorial.
APPLICATIONS OF AI
Following are the application of Artificial Intelligent
GAME PLAYING
You can buy machines that can play master level chess for a few hundred dollars. There is some AI in them, but they play well against people mainly through brute force computation–looking at hundreds of thousands of positions. To beat a world champion by brute force and known reliable heuristics requires being able to look at 200 million positions per second.
SPEECH RECOGNITION
In the 1990s, computer speech recognition reached a practical level for limited purposes. Thus United Airlines has replaced its keyboard tree for flight information by a system using speech recognition of flight numbers and city names. It is quite convenient. On the the other hand, while it is possible to instruct some computers using speech, most users have gone back to the keyboard and the mouse as still more convenient.
UNDERSTANDING NATURAL LANGUAGE
Just getting a sequence of words into a computer is not enough. Parsing sentences is not enough either. The computer has to be provided with an understanding of the domain the text is about, and this is presently possible only for very limited domains.
The Essay on Computer Virus Program Viruses Class
COMPUTER VIRUSES Cateye WHAT IS A COMPUTER VIRUS: The term usually used to define a computer virus is: ' A computer virus is often malicious software which replicates itself' [ Powell 1987 for similar definition ] - COMPUTER VIRUSES ARE BASICALLY PROGRAMS, LIKE A SPREADSHEET OR A WORD PROCESSOR. - PROGRAMS WHICH CAN INSERT EXECUTABLE COPIES OF ITSELF INTO OTHER PROGRAMS. - PROGRAMS THAT ...
COMPUTER VISION
The world is composed of three-dimensional objects, but the inputs to the human eye and computers’ TV cameras are two dimensional. Some useful programs can work solely in two dimensions, but full computer vision requires partial three-dimensional information that is not just a set of two-dimensional views. At present there are only limited ways of representing three-dimensional information directly, and they are not as good as what humans evidently use.
EXPERT SYSTEMS
A “knowledge engineer” interviews experts in a certain domain and tries to embody their knowledge in a computer program for carrying out some task. How well this works depends on whether the intellectual mechanisms required for the task are within the present state of AI. When this turned out not to be so, there were many disappointing results. One of the first expert systems was MYCIN in 1974, which diagnosed bacterial infections of the blood and suggested treatments. It did better than medical students or practicing doctors, provided its limitations were observed. Namely, its ontology included bacteria, symptoms, and treatments and did not include patients, doctors, hospitals, death, recovery, and events occurring in time. Its interactions depended on a single patient being considered. Since the experts consulted by the knowledge engineers knew about patients, doctors, death, recovery, etc., it is clear that the knowledge engineers forced what the experts told them into a predetermined framework. In the present state of AI, this has to be true. The usefulness of current expert systems depends on their users having common sense.
HEURISTIC CLASSIFICATION
One of the most feasible kinds of expert system given the present knowledge of AI is to put some information in one of a fixed set of categories using several sources of information. An example is advising whether to accept a proposed credit card purchase. Information is available about the owner of the credit card, his record of payment and also about the item he is buying and about the establishment from which he is buying it (e.g., about whether there have been previous credit card frauds at this establishment).
The Essay on Complete Computer System
The new Power Mac G4 is up to twice as fast as the fastest Pentium III-based PCs. With its Pentium-crushing speed and new design, the Power Mac G4 picks up where the old Macintosh (G3) left off. Its enclosure is now highly polished silver and graphite, yet it still offers easy access to every internal component through its swing-open side door. With PowerPC G4 with Velocity Engine, the computer ...