1.0 Introduction
The Internet is a network of networks that interconnects computers aroundthe world, supporting both business and residential users. In 1994, amultimedia Internet application known as the World Wide Web becamepopular. The higher bandwidth needs of this application have highlightedthe limited Internet access speeds available to residential users. Even at 28.8Kilobits per second (Kbps)—the fastest residential access commonlyavailable at the time of this writing—the transfer of graphical images can befrustratingly slow.
This report examines two enhancements to existing residentialcommunications infrastructure: Integrated Services Digital Network (ISDN),and cable television networks upgraded to pass bi-directional digital traffic(Cable Modems).
It analyzes the potential of each enhancement to deliverInternet access to residential users. It validates the hypothesis that upgradedcable networks can deliver residential Internet access more cost-effectively,while offering a broader range of services.
The research for this report consisted of case studies of two commercialdeployments of residential Internet access, each introduced in the spring of1994:
· Continental Cablevision and Performance Systems International (PSI)jointly developed PSICable, an Internet access service deployed overupgraded cable plant in Cambridge, Massachusetts;
· Internex, Inc. began selling Internet access over ISDN telephonecircuits available from Pacific Bell. Internex’s customers are residences andsmall businesses in the “Silicon Valley” area south of San Francisco,California.
The Essay on Terminal Access Internet Computer Users
INTERNET ACCESS by john york 1/4/97 It would be helpful to provide a brief historical summary of the Internet before jumping into the different means of accessing "The Net." The Internet was developed primarily by Vinton Cerf, an American computer scientist, in 1973 as a part of a United States Department of Defense Advanced Research Projects Agency project managed by American Engineer, Robert ...
2.0 The Internet
When a home is connected to the Internet, residential communicationsinfrastructure serves as the “last mile” of the connection between thehome computer and the rest of the computers on the Internet. Thissection describes the Internet technology involved in that connection.This section does not discuss other aspects of Internet technology indetail; that is well done elsewhere. Rather, it focuses on the servicesthat need to be provided for home computer users to connect to theInternet.
2.1 ISDN and upgraded cable networks will each provide different functionality(e.g. type and speed of access) and cost profiles for Internet connections. Itmight seem simple enough to figure out which option can provide the neededlevel of service for the least cost, and declare that option “better.” A keyproblem with this approach is that it is difficult to define exactly the neededlevel of service for an Internet connection. The requirements depend onthe applications being run over the connection, but these applications areconstantly changing. As a result, so are the costs of meeting the applications’requirements.
Until about twenty years ago, human conversation was by far the dominantapplication running on the telephone network. The network wasconsequently optimized to provide the type and quality of service needed forconversation. Telephone traffic engineers measured aggregate statisticalconversational patterns and sized telephone networks accordingly. Telephony’s well-defined and stable service requirements are reflected in the”3-3-3″ rule of thumb relied on by traffic engineers: the average voice calllasts three minutes, the user makes an average of three call attempts duringthe peak busy hour, and the call travels over a bidirectional 3 KHz channel.
In contrast, data communications are far more difficult to characterize. Datatransmissions are generated by computer applications. Not only do existingapplications change frequently (e.g. because of software upgrades), butentirely new categories—such as Web browsers—come into being quickly,adding different levels and patterns of load to existing networks. Researchers can barely measure these patterns as quickly as they aregenerated, let alone plan future network capacity based on them.
The Essay on Computer Networks Media Network Internet
Computer Networks Computers by themselves are useful tools. But once they are interconnected, they surge in usefulness and suddenly become media. One computer is connected into a network which is then patched into a network of networks. Computer networks have the potential to break the monopolies of media institutions. With networks, there is a shift from centralized, one-way media to dispersed, ...
The one generalization that does emerge from studies of both local and wide-area data traffic over the years is that computer traffic is bursty. It does notflow in constant streams; rather, “the level of traffic varies widely overalmost any measurement time scale” (Fowler and Leland, 1991).
Dynamicbandwidth allocations are therefore preferred for data traffic, since staticallocations waste unused resources and limit the flexibility to absorb burstsof traffic.
This requirement addresses traffic patterns, but it says nothing about theabsolute level of load. How can we evaluate a system when we never knowhow much capacity is enough? In the personal computing industry, thisproblem is solved by defining “enough” to be “however much I can affordtoday,” and relying on continuous price-performance improvements in digitaltechnology to increase that level in the near future. Since both of theinfrastructure upgrade options rely heavily on digital technology, anothercriteria for evaluation is the extent to which rapidly advancing technologycan be immediately reflected in improved service offerings.
Cable networks satisfy these evaluation criteria more effectively thantelephone networks because:
· Coaxial cable is a higher quality transmission medium than twistedcopper wire pairs of the same length. Therefore, fewer wires, andconsequently fewer pieces of associated equipment, need to beinstalled and maintained to provide the same level of aggregatebandwidth to a neighborhood. The result should be cost savings andeasier upgrades.
· Cable’s shared bandwidth approach is more flexible at allocating anyparticular level of bandwidth among a group of subscribers. Since itdoes not need to rely as much on forecasts of which subscribers willsign up for the service, the cable architecture can adapt more readilyto the actual demand that materializes.
· Telephony’s dedication of bandwidth to individual customers limitsthe peak (i.e. burst) data rate that can be provided cost-effectively. In contrast, the dynamic sharing enabled by cable’s bus architecturecan, if the statistical aggregation properties of neighborhood trafficcooperate, give a customer access to a faster peak data rate than theexpected average data rate.
The Term Paper on Internet Network Gave Birth To The Entirely New Information Space
Internet network gave birth to the entirely new information space cyberspace, and even the new type of culture - cyber culture. Cyberspace is a new information medium that allows communicating in a more efficient, and unique way. What does it mean? Communication, indeed is the most important "mineral wealth that can be found in internet. Information medium offers to the users not only the ...
2.2 Why focus on Internet access?Internet access has several desirable properties as an application toconsider for exercising residential infrastructure. Internet technology isbased on a peer-to-peer model of communications. Internet usageencompasses a wide mix of applications, including low- and high-bandwidth as well as asynchronous and real-time communications. Different Internet applications may create varying degrees ofsymmetrical (both to and from the home) and asymmetrical trafficflows. Supporting all of these properties poses a challenge for existingresidential communications infrastructures.
Internet access differs from the future services modeled by other studiesdescribed below in that it is a real application today, with growingdemand. Aside from creating pragmatic interest in the topic, this factoralso makes it possible to perform case studies of real deployments.
Finally, the Internet’s organization as an “Open Data Network” (in thelanguage of (Computer Science and Telecommunications Board of theNational Research Council, 1994)) makes it a service worthy of studyfrom a policy perspective. The Internet culture’s expectation ofinterconnection and cooperation among competing organizations mayclash with the monopoly-oriented cultures of traditional infrastructureorganizations, exposing policy issues. In addition, the Internet’s statusas a public data network may make Internet access a service worthencouraging for the public good. Therefore, analysis of costs to providethis service may provide useful input to future policy debates.
3.0 TechnologiesThis chapter reviews the present state and technical evolution ofresidential cable network infrastructure. It then discusses a topic notcovered much in the literature, namely, how this infrastructure can beused to provide Internet access. It concludes with a qualitativeevaluation of the advantages and disadvantages of cable-based Internetaccess. While ISDN is extensively described in the literature, its use asan Internet access medium is less well-documented. This chapterbriefly reviews local telephone network technology, including ISDNand future evolutionary technologies. It concludes with a qualitativeevaluation of the advantages and disadvantages of ISDN-based Internetaccess.
The Term Paper on Neural Network Speaker Telephone Identification
SPEAKER IDENTIFICATION AND VERIFICATION OVER SHORT DISTANCE TELEPHONE LINES USING ARTIFICIAL NEURALNETWORKSGanesh K Venayagamoorthy, Nar end Sunderpersadh, and Theophilus N Engineering Department, M L Sultan Technik on, P O Box 1334, Durban, South Africa. ABSTRACT Crime and corruption have become rampant today in our society and countless money is lost each year due to white collar crime, fraud, ...
3.1 Cable TechnologyResidential cable TV networks follow the tree and branch architecture. In each community, a head end is installed to receive satellite andtraditional over-the-air broadcast television signals. These signals arethen carried to subscriber’s homes over coaxial cable that runs from thehead end throughout the community
Figure 3.1: Coaxial cable tree-and-branch topology
To achieve geographical coverage of the community, the cablesemanating from the head end are split (or “branched”) into multiplecables. When the cable is physically split, a portion of the signal poweris split off to send down the branch. The signal content, however, is notsplit: the same set of TV channels reach every subscriber in thecommunity. The network thus follows a logical bus architecture. Withthis architecture, all channels reach every subscriber all the time,whether or not the subscriber’s TV is on. Just as an ordinary televisionincludes a tuner to select the over-the-air channel the viewer wishes towatch, the subscriber’s cable equipment includes a tuner to selectamong all the channels received over the cable.
3.1.1. Technological evolutionThe development of fiber-optic transmission technology has led cablenetwork developers to shift from the purely coaxial tree-and-brancharchitecture to an approach referred to as Hybrid Fiber and Coax(HFC)networks. Transmission over fiber-optic cable has two main advantagesover coaxial cable:
· A wider range of frequencies can be sent over the fiber, increasingthe bandwidth available for transmission;
· Signals can be transmitted greater distances without amplification.
The Essay on Cable Modems Data Lan Internet
... The signal is then sent throughout the network to the cable subscribers. Because the signal dissipates over long lengths ... bandwidth connection to the Internet. Still, the high peak data rates of cable LANs can make them a very effective Internet access network. ... telephone modem. This speed represents the peak rate at which a subscriber can send and receive data. The effective average bandwidth ...
The main disadvantage of fiber is that the optical components requiredto send and receive data over it are expensive. Because lasers are stilltoo expensive to deploy to each subscriber, network developers haveadopted an intermediate Fiber to the Neighborhood (FTTN)approach.
Figure 3.3: Fiber to the Neighborhood (FTTN) architecture
Various locations along the existing cable are selected as sites forneighborhood nodes. One or more fiber-optic cables are then run fromthe head end to each neighborhood node. At the head end, the signal isconverted from electrical to optical form and transmitted via laser overthe fiber. At the neighborhood node, the signal is received via laser,converted back from optical to electronic form, and transmitted to thesubscriber over the neighborhood’s coaxial tree and branch network.
FTTN has proved to be an appealing architecture for telephonecompanies as well as cable operators. Not only ContinentalCablevision and Time Warner, but also Pacific Bell and Southern NewEngland Telephone have announced plans to build FTTN networks. Fiber to the neighborhood is one stage in a longer-range evolution ofthe cable plant. These longer-term changes are not necessary to provideInternet service today, but they might affect aspects of how Internetservice is provided in the future.
3.2 ISDN TechnologyUnlike cable TV networks, which were built to provide only localredistribution of television programming, telephone networks provideswitched, global connectivity: any telephone subscriber can call anyother telephone subscriber anywhere else in the world. A call placedfrom a home travels first to the closest telephone company CentralOffice (CO) switch. The CO switch routes the call to the destinationsubscriber, who may be served by the same CO switch, another COswitch in the same local area, or a CO switch reached through a long-distance network.
Figure 4.1: The telephone network
The portion of the telephone network that connects the subscriber tothe closest CO switch is referred to as the local loop. Since all callsenter and exit the network via the local loop, the nature of the localconnection directly affects the type of service a user gets from theglobal telephone network.
The Term Paper on Host Computer Internet Network Information
Telecommunications The transmission of words, sounds, images, or data in the form of electronic or electromagnetic signals or impulses. Transmission media include the telephone (using wire or optical cable), radio, television, microwave, and satellite. Data communication, the fastest growing field of telecommunication, is the process of transmitting data in digital form by wire or radio. Digital ...
With a separate pair of wires to serve each subscriber, the localtelephone network follows a logical star architecture. Since a CentralOffice typically serves thousands of subscribers, it would be unwieldyto string wires individually to each home. Instead, the wire pairs areaggregated into groups, the largest of which are feeder cables. Atintervals along the feeder portion of the loop, junction boxes are placed. In a junction box, wire pairs from feeder cables are spliced to wire pairsin distribution cables that run into neighborhoods. At each subscriberlocation, a drop wire pair (or pairs, if the subscriber has more than oneline) is spliced into the distribution cable.
Since distribution cables are either buried or aerial, they are disruptiveand expensive to change. Consequently, a distribution cable usuallycontains as many wire pairs as a neighborhood might ever need, inadvance of actual demand.
Implementation of ISDN is hampered by the irregularity of the localloop plant. Referring back to Figure 4.3, it is apparent that loops are ofdifferent lengths, depending on the subscriber’s distance from theCentral Office. ISDN cannot be provided over loops with loading coilsor loops longer than 18,000 feet (5.5 km).
4.0 Internet Access
This section will outline the contrasts of access via the cable plant withrespect to access via the local telephon network.
4.1 Internet Access Via CableThe key question in providing residential Internet access is what kind ofnetwork technology to use to connect the customer to the Internet Forresidential Internet delivered over the cable plant, the answer isbroadband LAN technology. This technology allows transmission of digital data over one or more of the 6 MHz channels of a CATV cable. Since video and audio signals can also be transmitted over otherchannels of the same cable, broadband LAN technology can co-existwith currently existing services.
BandwidthThe speed of a cable LAN is described by the bit rate of the modemsused to send data over it. As this technology improves, cable LANspeeds may change, but at the time of this writing, cable modems rangein speed from 500 Kbps to 10 Mbps, or roughly 17 to 340 times the bitrate of the familiar 28.8 Kbps telephone modem. This speed representsthe peak rate at which a subscriber can send and receive data, duringthe periods of time when the medium is allocated to that subscriber. Itdoes not imply that every subscriber can transfer data at that ratesimultaneously. The effective average bandwidth seen by eachsubscriber depends on how busy the LAN is. Therefore, a cable LANwill appear to provide a variable bandwidth connection to the Internet
Full-time connectionsCable LAN bandwidth is allocated dynamically to a subscriber onlywhen he has traffic to send. When he is not transferring traffic, he doesnot consume transmission resources. Consequently, he can always beconnected to the Internet Point of Presence without requiring anexpensive dedication of transmission resources.
4.2 Internet Access Via Telephone Company
In contrast to the shared-bus architecture of a cable LAN, the telephonenetwork requires the residential Internet provider to maintain multipleconnection ports in order to serve multiple customers simultaneously. Thus, the residential Internet provider faces problems of multiplexingand concentration of individual subscriber lines very similar to thosefaced in telephone Central Offices.
The point-to-point telephone network gives the residential Internetprovider an architecture to work with that is fundamentally differentfrom the cable plant. Instead of multiplexing the use of LANtransmission bandwidth as it is needed, subscribers multiplex the use ofdedicated connections to the Internet provider over much longer timeintervals. As with ordinary phone calls, subscribers are allocated fixedamounts of bandwidth for the duration of the connection. Eachsubscriber that succeeds in becoming active (i.e. getting connected tothe residential Internet provider instead of getting a busy signal) isguaranteed a particular level of bandwidth until hanging up the call.
BandwidthAlthough the predictability of this connection-oriented approach isappealing, its major disadvantage is the limited level of bandwidth thatcan be economically dedicated to each customer. At most, an ISDNline can deliver 144 Kbps to a subscriber, roughly four times thebandwidth available with POTS. This rate is both the average and thepeak data rate. A subscriber needing to burst data quickly, for exampleto transfer a large file or engage in a video conference, may prefer ashared-bandwidth architecture, such as a cable LAN, that allows ahigher peak data rate for each individual subscriber. A subscriber whoneeds a full-time connection requires a dedicated port on a terminalserver. This is an expensive waste of resources when the subscriber isconnected but not transferring data.
5.0 Cost
Cable-based Internet access can provide the same average bandwidthand higher peak bandwidth more economically than ISDN. Forexample, 500 Kbps Internet access over cable can provide the sameaverage bandwidth and four times the peak bandwidth of ISDN accessfor less than half the cost per subscriber. In the technology referencemodel of the case study, the 4 Mbps cable service is targeted atorganizations. According to recent benchmarks, the 4 Mbps cableservice can provide the same average bandwidth and thirty-two timesthe peak bandwidth of ISDN for only 20% more cost per subscriber. When this reference model is altered to target 4 Mbps service toindividuals instead of organizations, 4 Mbps cable access costs 40%less per subscriber than ISDN. The economy of the cable-basedapproach is most evident when comparing the per-subscriber cost perbit of peak bandwidth: $0.30 for Individual 4 Mbps, $0.60 forOrganizational 4 Mbps, and $2 for the 500 Kbps cable services—versusclose to $16 for ISDN. However, the potential penetration of cable-based access is constrained in many cases (especially for the 500 Kbpsservice) by limited upstream channel bandwidth. While the penetrationlimits are quite sensitive to several of the input parameter assumptions,the cost per subscriber is surprisingly less so.
Because the models break down the costs of each approach into theirseparate components, they also provide insight into the match betweenwhat follows naturally from the technology and how existing businessentities are organized. For example, the models show that subscriberequipment is the most significant component of average cost. Whensubscribers are willing to pay for their own equipment, the accessprovider’s capital costs are low. This business model has beensuccessfully adopted by Internex, but it is foreign to the cable industry. As the concluding chapter discusses, the resulting closed marketstructure for cable subscriber equipment has not been as effective as theopen market for ISDN equipment at fostering the development ofneeded technology. In addition, commercial development of both cableand ISDN Internet access has been hindered by monopoly control ofthe needed infrastructure—whether manifest as high ISDN tariffs orsimple lack of interest from cable operators.