Roller coasters Additional notes: GPE = m x g x h KE = m x v? The main energy transfers that happen as a car travels along the track from the start of the ride to the end: [1]The rollercoaster car gains gravitational potential energy (GPE) as it travels to the top. Once over the top, the car gains speed as GPE is transferred to kinetic energy (KE).
As it travels to the top of another loop, KE is transferred to GPE. Not all the energy is transferred to or from GPE – some is transferred to the surroundings as heat and sound.
All moving objects have kinetic energy, KE. The kinetic energy an object has depends on the mass and speed. If the mass doubles, the KE doubles and if the speed doubles, the KE quadruples. Normally energy is lost through sound and heat (friction, air resistance).
How the heights of the hills are designed to allow an empty car to reach the end of the ride: [2]The hills are designed so that it is low enough that the momentum of the car from the previous drop carries it up and over the hill.
This is why the hills are usually lower towards the end of the ride, because the car has lost momentum due to friction and air resistance. Mainly the consecutive hill must be lower as it will not have enough energy because some of it is lost and sound and heat. Therefore, if the car was to reach the end of the ride, the height of the hills must be lower each consecutive time. How the energy transfers determine the heights of the hills: [4] After the roller coaster is drops from the first hill it does two things with its energy.
The Essay on Different types of energy transfer
For us to do work, we need energy. Energy is measured in joules, (J) or kilojoules (kJ) Energy exists in many different forums such as Kinetic and potential energy – Kinetic energy is the movement of energy and potential is stored energy, energy ready to go. A lawn mower filled with gasoline, a car on top of a hill, and students waiting to go home from school are all examples of potential energy. ...
First, it begins to transform that energy from one form to another–from gravitational potential energy to kinetic energy and from kinetic energy to gravitational potential energy, back and forth. Second, it begins to transfer some of its energy to its environment, mostly in the form of heat and sound. Each time the roller coaster goes downhill, its gravitational potential energy decreases and its kinetic energy increases. Each time the roller coaster goes uphill, its kinetic energy decreases and its gravitational potential energy increases.
But each transfer of energy isn’t complete because some of the energy is lost to heat and sound. Because of this lost energy, the roller coaster can’t return to its original height after coasting downhill. That’s why each successive hill must be lower than the previous hill. Eventually the roller coaster has lost so much of its original total energy that the ride must end. With so little total energy left, the roller coaster can’t have much gravitational potential energy and must be much lower than the top of the first hill.
This is why the hills must be a certain height, in order to transfer enough GPE into KE.
Bibliography:
[1] http://www. bbc. co. uk/schools/gcsebitesize/science/add_ocr_gateway/forces/themeridesrev2. shtml [2] http://science. howstuffworks. com/engineering/structural/roller-coaster3. htm [3] http://www. coasterforce. com/coasters/technical-info/physics-of-a-coaster [4] http://library. thinkquest. org/26455/amuse/roller/roller01. shtml [5] – Collins Additional Sciences B ISBN-13 978-0-00-741531-1 Colin Bell, 2011